依实际情况而定,目前很多需求不是单纯的定位,很多都需视觉检测特征然后定位,尺寸测量要看实际情况,主要是检测的数据要求,局部同一视野或运算后整体粗略尺寸,一般定位系统也可以实现。高精度尺寸测量就是另一个范畴了,硬件、安装结构等都要满足才可以。
机器视觉在生产制造中主要用在视觉引导,尺寸测量,产品检测,物体识别等几个领域。
在这几个领域中,一个最基本的算法就是产品识别和定位,比如视觉引导机器人,要在图像中识别出要抓取的产品,并定位出坐标,才引导机器人到指定的产品位置。尺寸测量,产品检测等也是一样的,在测量和检测之前,首先要知道有没有产品,产品的位置在哪里,才可以应用后续的各种分析工具。因此,产品识别和定位是一个基本问题。如果要设计一个可行的产品识别和定位的算法,需要克服几方面的困难:
1、快速的指定产品:工业产品千差万别。因此,对于每一个具体的应用,需要从几张,甚至一张图像上,快速指定需要查找的产品,比如当前产线需要定位铆钉的位置,拍一张照片并进行相应的学习,就可以在后续的图像中进行搜索定位。
2、快速的搜索产品:对于一张200万像素的图片,通常要求在几十毫秒的时间可以识别和定位出产品的位置。
3、高精度的定位:工业生产对精度和公差有严格的要求,因此产品的定位就要力求准确。现在普遍要求识别定位算法可以达到一个像素级别的定位精度,甚至可以达到亚像素级别。
4、可以适应产品缺失、遮挡、脏污等的影响:如果一个产品被遮挡,导致产品在图像中缺失一定比列,需要依然可以识别定位到物体。反之,如果产品表面发生脏污,导致表面的特征发生变化,需要依然可以识别定位。
5、可以适应光照亮度不均匀的影响:如果产品的亮度发生变化,比如一半亮一半暗,需要依然可以识别定位。
6、可以识别旋转的产品:产品通常可能在360度范围内旋转。
7、可以识别多个产品:一张图像中可能有多个产品,需要分别识别定位。
8、可以准确识别接近对称的物体:接近对称的物体很容易别识别成错误的方向,需要进行相应的设计。
9、可以应对物体的极性翻转:比如学习的产品是白底黑字,但是实际上产品图像有可能是黑底白字,需要可以识别。
手 机:15995487908
传 真:0512-66932077
网 址:www.leadevice.com
地 址:苏州市吴中区苏福公路石码头2号
扫一扫